A Connection between Ghirlanda-guerra Identities and Ultrametricity

نویسنده

  • Dmitry Panchenko
چکیده

We consider a symmetric positive definite weakly exchangeable infinite random matrix whose elements take a finite number of values and we prove that if the distribution of the matrix satisfies the Ghirlanda-Guerra identities then it is ultrametric with probability one.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

8 M ay 2 00 9 A connection between the Ghirlanda - Guerra identities and ultrametricity

We consider a symmetric positive definite weakly exchangeable infinite random matrix and show that, under a technical condition that its elements take a finite number of values, the Ghirlanda-Guerra identities imply ultrametricity.

متن کامل

On the Distribution of Overlaps in the Sherrington-kirkpatrick Spin Glass Model

|This expository paper describes some of the analytic tools developed recently by S. Ghirlanda and F. Guerra in the investigation of the distribution of overlaps in the Sherrington-Kirkpatrick spin glass model and of Parisi's ultrametricity. In particular, we introduce to this task a simpliied model on which the Gaussian analysis is made easier, and describe, under the essential tool of self-av...

متن کامل

M ay 2 00 5 the ghirlanda - guerra identities

If the variance of a Gaussian spin-glass Hamiltonian grows like the volume the model fulfills the Ghirlanda-Guerra identities in terms of the normalized Hamiltonian covariance.

متن کامل

The Ghirlanda-Guerra identities

If the variance of a Gaussian spin-glass Hamiltonian grows like the volume the model fulfills the Ghirlanda-Guerra identities in terms of the normalized Hamiltonian covariance.

متن کامل

- guerra identities

If the variance of a Gaussian spin-glass Hamiltonian grows like the volume the model fulfills the Ghirlanda-Guerra identities in terms of the normalized Hamiltonian covariance.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008